Skip to content

2020

Comparing Rt numbers for Belgium on 09-12-2020

Model Based on URL Rt Date
by Niel Hens Cases https://gjbex.github.io/DSI_UHasselt_covid_dashboard/ 0.96 20-12-5
Cori et al. (2013) Hospitalisations https://covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_Weekly_report_NL.pdf 0.798 20-11-27/ till 20-12-3
RKI Hospitalisations https://datastudio.google.com/embed/u/0/reporting/c14a5cfc-cab7-4812-848c-0369173148ab/page/ZwmOB 0.97 20-12-09
rtlive Cases https://rtlive.de/global.html 0.80 20-12-09
epiforecast Cases and Deaths https://epiforecasts.io/covid/posts/national/belgium/ 0.5 20-12-07
Huisman et al. (2020) Cases https://ibz-shiny.ethz.ch/covid-19-re-international/ 1.01 20-11-24
Huisman et al. (2020) Hospitalisations https://ibz-shiny.ethz.ch/covid-19-re-international/ 0.84 20-11-24
RKI Cases https://twitter.com/BartMesuere/status/1336565641764089856 0.99 20-12-08
Deforche (2020) Hospitalisations and Deaths https://twitter.com/houterkabouter/status/1336582281994055680 0.85 20-12-09
SEIR Hospitalisations and Deaths https://twitter.com/vdwnico/status/1336557572254552065 1.5 20-12-09

Estimating the effective reproduction number in Belgium with the RKI method

Using the Robert Koch Institute method with serial interval of 4.

Every day Bart Mesuere tweets a nice dashboard with current numbers about Covid-19 in Belgium. This was the tweet on Wednesday 20/11/04:

twitter: https://twitter.com/BartMesuere/status/1323881489864548352

It's nice to see that the effective reproduction number ($Re(t)$) is again below one. That means the power of virus is declining and the number of infection will start to lower. This occured first on Tuesday 2020/11/3:

twitter: https://twitter.com/BartMesuere/status/1323519613855059968

I estimated the $Re(t)$ earlier with rt.live model in this notebook. There the $Re(t)$ was still estimated to be above one. Michael Osthege replied with a simulation results with furter improved model:

twitter: https://twitter.com/theCake/status/1323211910481874944

In that estimation, the $Re(t)$ was also not yet heading below one at the end of october.

In this notebook, we will implement a calculation based on the method of the Robert Koch Institute. The method is described and programmed in R in this blog post.

In that blogpost there's a link to a website with estimations for most places in the world The estimation for Belgium is here

LSHTM

According to that calculation, $Re(t)$ is already below zero for some days.

Load libraries and data

import numpy as np
import pandas as pd
df_tests = pd.read_csv('https://epistat.sciensano.be/Data/COVID19BE_tests.csv', parse_dates=['DATE'])
df_cases = pd.read_csv('https://epistat.sciensano.be/Data/COVID19BE_CASES_AGESEX.csv', parse_dates=['DATE'])
df_cases
DATE PROVINCE REGION AGEGROUP SEX CASES
0 2020-03-01 Antwerpen Flanders 40-49 M 1
1 2020-03-01 Brussels Brussels 10-19 F 1
2 2020-03-01 Brussels Brussels 10-19 M 1
3 2020-03-01 Brussels Brussels 20-29 M 1
4 2020-03-01 Brussels Brussels 30-39 F 1
... ... ... ... ... ... ...
36279 NaT VlaamsBrabant Flanders 40-49 M 3
36280 NaT VlaamsBrabant Flanders 50-59 M 1
36281 NaT WestVlaanderen Flanders 20-29 F 1
36282 NaT WestVlaanderen Flanders 50-59 M 3
36283 NaT NaN NaN NaN NaN 1

36284 rows × 6 columns

Reformat data into Rtlive format

df_cases_per_day = (df_cases
   .dropna(subset=['DATE'])
   .assign(region='Belgium')
   .groupby(['region', 'DATE'], as_index=False)
   .agg(cases=('CASES', 'sum'))
   .rename(columns={'DATE':'date'})
   .set_index(["region", "date"])
)

What's in our basetable:

df_cases_per_day
cases
region date
Belgium 2020-03-01 19
2020-03-02 19
2020-03-03 34
2020-03-04 53
2020-03-05 81
... ...
2020-11-01 2660
2020-11-02 13345
2020-11-03 11167
2020-11-04 4019
2020-11-05 5

250 rows × 1 columns

Let's plot the number of cases in function of the time.

ax = df_cases_per_day.loc['Belgium'].plot(figsize=(18,6))
ax.set(ylabel='Number of cases', title='Number of cases for covid-19 and number of positives in Belgium');

png

We see that the last days are not yet complete. Let's cut off the last two days of reporting.

import datetime
from dateutil.relativedelta import relativedelta

Calculate the date two days ago:

datetime.date(2020, 11, 3)
datetime.date(2020, 11, 3)
# today_minus_two = datetime.date.today() + relativedelta(days=-2)
today_minus_two = datetime.date(2020, 11, 3) # Fix the day
today_minus_two.strftime("%Y-%m-%d")
'2020-11-03'

Replot the cases:

ax = df_cases_per_day.loc['Belgium'][:today_minus_two].plot(figsize=(18,6))
ax.set(ylabel='Number of cases', title='Number of cases for covid-19 and number of positives in Belgium');

png

Select the Belgium region:

region = 'Belgium'
df = df_cases_per_day.loc[region][:today_minus_two]
df
cases
date
2020-03-01 19
2020-03-02 19
2020-03-03 34
2020-03-04 53
2020-03-05 81
... ...
2020-10-30 15185
2020-10-31 6243
2020-11-01 2660
2020-11-02 13345
2020-11-03 11167

248 rows × 1 columns

Check the types of the columns:

df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 248 entries, 2020-03-01 to 2020-11-03
Data columns (total 1 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   cases   248 non-null    int64
dtypes: int64(1)
memory usage: 3.9 KB

Robert Koch Institute method

A basic method to calculate the effective reproduction number is described (among others) in this blogpost. I included the relevant paragraph:

In a recent report (an der Heiden and Hamouda 2020) the RKI described their method for computing R as part of the COVID-19 outbreak as follows (p. 13): For a constant generation time of 4 days, one obtains R as the ratio of new infections in two consecutive time periods each consisting of 4 days. Mathematically, this estimation could be formulated as part of a statistical model:

$$y_{s+4} | y_{s} \sim Po(R \cdot y_{s}), s= 1,2,3,4$$

where $y_{1}, \ldots, y_{4}$ are considered as fixed. From this we obtain

$$\hat{R}{RKI} = \sum$$}^{4} y_{s+4} / \sum_{s=1}^{4} y_{s

Somewhat arbitrary, we denote by $Re(t)$ the above estimate for R when $s=1$ corresponds to time $t-8$, i.e. we assign the obtained value to the last of the 8 values used in the computation.

In Python, we define a lambda function that we apply on a rolling window. Since indexes start from zero, we calculate:

$$\hat{R}{RKI} = \sum$$}^{3} y_{s+4} / \sum_{s=0}^{3} y_{s

rt = lambda y: np.sum(y[4:])/np.sum(y[:4])
df.rolling(8).apply(rt)
cases
date
2020-03-01 NaN
2020-03-02 NaN
2020-03-03 NaN
2020-03-04 NaN
2020-03-05 NaN
... ...
2020-10-30 1.273703
2020-10-31 0.929291
2020-11-01 0.601838
2020-11-02 0.499806
2020-11-03 0.475685

248 rows × 1 columns

The first values are Nan because the window is in the past. If we plot the result, it looks like this:

ax = df.rolling(8).apply(rt).plot(figsize=(16,4), label='Re(t)')
ax.set(ylabel='Re(t)', title='Effective reproduction number estimated with RKI method')
ax.legend(['Re(t)']);

png

To avoid the spikes due to weekend reporting issue, I first applied a rolling mean on a window of 7 days:

ax = df.rolling(7).mean().rolling(8).apply(rt).plot(figsize=(16,4), label='Re(t)')
ax.set(ylabel='Re(t)', title='Effective reproduction number estimated with RKI method after rolling mean on window of 7 days')
ax.legend(['Re(t)']);

png

Interactive visualisation in Altair

import altair as alt

alt.Chart(df.rolling(7).mean().rolling(8).apply(rt).fillna(0).reset_index()).mark_line().encode(
    x=alt.X('date:T'),
    y=alt.Y('cases', title='Re(t)'),
    tooltip=['date:T', alt.Tooltip('cases', format='.2f')]
).transform_filter(
    alt.datum.date > alt.expr.toDate('2020-03-13')
).properties(
    width=600,
    title='Effective reproduction number in Belgium based on Robert-Koch Institute method'
)

Making the final visualisation in Altair

In the interactive Altair figure below, we show the $Re(t)$ for the last 14 days. We reduce the rolling mean window to three to see faster reactions.

#collapse

df_plot = df.rolling(7).mean().rolling(8).apply(rt).fillna(0).reset_index()
last_value = str(df_plot.iloc[-1]['cases'].round(2)) + ' ↓'
first_value = str(df_plot[df_plot['date'] == '2020-10-21'].iloc[0]['cases'].round(2)) # + ' ↑'
today_minus_15 = datetime.datetime.today() + relativedelta(days=-15)
today_minus_15_str = today_minus_15.strftime("%Y-%m-%d")

line = alt.Chart(df_plot).mark_line(point=True).encode(
    x=alt.X('date:T', axis=alt.Axis(title='Datum', grid=False)),
    y=alt.Y('cases', axis=alt.Axis(title='Re(t)', grid=False, labels=False, titlePadding=40)),
    tooltip=['date:T', alt.Tooltip('cases', title='Re(t)', format='.2f')]
).transform_filter(
    alt.datum.date > alt.expr.toDate(today_minus_15_str)
).properties(
    width=600,
    height=100
)

hline = alt.Chart(pd.DataFrame({'cases': [1]})).mark_rule().encode(y='cases')


label_right = alt.Chart(df_plot).mark_text(
    align='left', dx=5, dy=-10 , size=15
).encode(
    x=alt.X('max(date):T', title=None),
    text=alt.value(last_value),
)

label_left = alt.Chart(df_plot).mark_text(
    align='right', dx=-5, dy=-40, size=15
).encode(
    x=alt.X('min(date):T', title=None),
    text=alt.value(first_value),
).transform_filter(
    alt.datum.date > alt.expr.toDate(today_minus_15_str)
)

source = alt.Chart(
    {"values": [{"text": "Data source: Sciensano"}]}
).mark_text(size=12, align='left', dx=-57).encode(
    text="text:N"
)

alt.vconcat(line + label_left + label_right + hline, source).configure(
    background='#D9E9F0'
).configure_view(
    stroke=None, # Remove box around graph
).configure_axisY(
    ticks=False,
    grid=False,
    domain=False
).configure_axisX(
    grid=False,
    domain=False
).properties(title={
      "text": ['Effective reproduction number for the last 14 days in Belgium'], 
      "subtitle": [f'Estimation based on the number of cases until {today_minus_two.strftime("%Y-%m-%d")} after example of Robert Koch Institute with serial interval of 4'],
}
)
# .configure_axisY(
#     labelPadding=50,
# )

To check the calculation, here are the last for values for the number of cases after applying the mean window of 7:

df.rolling(7).mean().iloc[-8:-4]
cases
date
2020-10-27 16067.571429
2020-10-28 16135.857143
2020-10-29 15744.571429
2020-10-30 15218.000000

Those must be added together:

df.rolling(7).mean().iloc[-8:-4].sum()
cases    63166.0
dtype: float64

And here are the four values, starting four days ago:

df.rolling(7).mean().iloc[-4:]
cases
date
2020-10-31 14459.428571
2020-11-01 14140.428571
2020-11-02 13213.428571
2020-11-03 11641.428571

These are added together:

df.rolling(7).mean().iloc[-4:].sum()
cases    53454.714286
dtype: float64

And now we divide those two sums to get the $Re(t)$ of 2020-11-03:

df.rolling(7).mean().iloc[-4:].sum()/df.rolling(7).mean().iloc[-8:-4].sum()
cases    0.846258
dtype: float64

This matches (as expected) the value in the graph. Let's compare with three other sources:

  1. Alas it does not match the calculation reported by Bart Mesuere on 2020-11-03 based on the RKI model that reports 0.96:

twitter: https://twitter.com/BartMesuere/status/1323519613855059968

  1. Also, the more elaborated model from rtliveglobal is not yet that optimistic. Mind that model rtlive start estimating the $Re(t)$ from the number of tests instead of the number of cases. It might be that other reporting delays are involved.

  2. epiforecast.io is already below 1 since beginning of November.

Another possiblity is that I made somewhere a mistake. If you spot it, please let me know.


My talk at data science leuven

Links to video and slides of the talk and thanking people.

Talk material

On 23 April 2020, I was invited for a talk at Data science Leuven. I talked about how you can explore and explain the results of a clustering exercise. The target audience are data scientists that that have notions of how to cluster data and that want to improve their skills.

The video is recorded on Youtube:

youtube: https://youtu.be/hk0arqhcX9U?t=3570

You can see the slides here: slides

The talk itself is based on this notebook that I published on this blog yesterday and that I used to demo during the talk.

The host of the conference was Istvan Hajnal. He tweeted the following:

twitter: https://twitter.com/dsleuven/status/1253391470444371968

He also took the R out of my family name NachteRgaele. Troubles with R, it's becoming a story of my life... 😂 Behind the scene Kris Peeters calmly took the heat of doing the live streaming. 👍 Almost Pydata quality! Big thanks to the whole Data Science Leuven team that is doing all this on voluntary basis.

Standing on the shoulders of the giants

This talks was not possible without the awesome Altair visualisation library made by Jake VanderPlas. Secondly, it builds upon the open source Shap library made by Scott Lundberg. Those two libraries had a major impact on my daily work as datascientist at Colruyt group. They inspired me in trying to give back to the open source community with this talk. 🤘

If you want to learn how to use Altair I recommend the tutorial made by Vincent Warmerdam on his calm code site: https://calmcode.io/altair/introduction.htm

I would also like to thank my collegues at work who endured the dry-run of this talk and who made the suggestion to try to use a classifier to explain the clustering result. Top team!

Awesome fastpages

Finally, this blog is build with the awesome fastpages. I can now share a rendered Jupyter notebook, with working interactive demos, that can be opened in My binder or Google Colab with one click on a button. This means that readers can directly tinker around with the code and methods discussed in the talk. All you need is a browser and an internet connection. So thank you Jeremy Howard, Hamel Husain, and the fastdotai team for pulling this off. Thank you Hamel Husain for your Github Actions. I will cast for two how awesome this all is.


Regional covid-19 mortality in Belgium per gender and age

Combines the mortality number of the last 10 year with those of covid-19 this year.

# Import pandas for data wrangling and Altair for plotting
import pandas as pd
import altair as alt
df_tot_sc = pd.read_excel('https://epistat.sciensano.be/Data/COVID19BE.xlsx')
df_inhab = pd.read_excel('https://statbel.fgov.be/sites/default/files/files/opendata/bevolking%20naar%20woonplaats%2C%20nationaliteit%20burgelijke%20staat%20%2C%20leeftijd%20en%20geslacht/TF_SOC_POP_STRUCT_2019.xlsx')
df_inhab
CD_REFNIS TX_DESCR_NL TX_DESCR_FR CD_DSTR_REFNIS TX_ADM_DSTR_DESCR_NL TX_ADM_DSTR_DESCR_FR CD_PROV_REFNIS TX_PROV_DESCR_NL TX_PROV_DESCR_FR CD_RGN_REFNIS TX_RGN_DESCR_NL TX_RGN_DESCR_FR CD_SEX CD_NATLTY TX_NATLTY_NL TX_NATLTY_FR CD_CIV_STS TX_CIV_STS_NL TX_CIV_STS_FR CD_AGE MS_POPULATION
0 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 69 11
1 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 80 3
2 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande M BEL Belgen Belges 4 Gescheiden Divorcé 30 2
3 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 48 26
4 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 76 2
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
463376 93090 Viroinval Viroinval 93000 Arrondissement Philippeville Arrondissement de Philippeville 90000.0 Provincie Namen Province de Namur 3000 Waals Gewest Région wallonne F BEL Belgen Belges 3 Weduwstaat Veuf 73 10
463377 93090 Viroinval Viroinval 93000 Arrondissement Philippeville Arrondissement de Philippeville 90000.0 Provincie Namen Province de Namur 3000 Waals Gewest Région wallonne M BEL Belgen Belges 3 Weduwstaat Veuf 64 1
463378 93090 Viroinval Viroinval 93000 Arrondissement Philippeville Arrondissement de Philippeville 90000.0 Provincie Namen Province de Namur 3000 Waals Gewest Région wallonne M BEL Belgen Belges 3 Weduwstaat Veuf 86 3
463379 93090 Viroinval Viroinval 93000 Arrondissement Philippeville Arrondissement de Philippeville 90000.0 Provincie Namen Province de Namur 3000 Waals Gewest Région wallonne M ETR niet-Belgen non-Belges 3 Weduwstaat Veuf 74 1
463380 93090 Viroinval Viroinval 93000 Arrondissement Philippeville Arrondissement de Philippeville 90000.0 Provincie Namen Province de Namur 3000 Waals Gewest Région wallonne M BEL Belgen Belges 3 Weduwstaat Veuf 52 1

463381 rows × 21 columns

inhab_provence = df_inhab['TX_PROV_DESCR_NL'].dropna().unique()
inhab_provence
array(['Provincie Antwerpen', 'Provincie Vlaams-Brabant',
       'Provincie Waals-Brabant', 'Provincie West-Vlaanderen',
       'Provincie Oost-Vlaanderen', 'Provincie Henegouwen',
       'Provincie Luik', 'Provincie Limburg', 'Provincie Luxemburg',
       'Provincie Namen'], dtype=object)
sc_provence = df_tot_sc['PROVINCE'].unique()
sc_provence
array(['Brussels', 'Liège', 'Limburg', 'OostVlaanderen', 'VlaamsBrabant',
       'Antwerpen', 'WestVlaanderen', 'BrabantWallon', 'Hainaut', 'Namur',
       nan, 'Luxembourg'], dtype=object)
[p.split()[1] for p in inhab_provence]
['Antwerpen',
 'Vlaams-Brabant',
 'Waals-Brabant',
 'West-Vlaanderen',
 'Oost-Vlaanderen',
 'Henegouwen',
 'Luik',
 'Limburg',
 'Luxemburg',
 'Namen']
map_statbel_provence_to_sc_provence = {'Provincie Antwerpen':'Antwerpen', 'Provincie Vlaams-Brabant':'VlaamsBrabant',
       'Provincie Waals-Brabant':'BrabantWallon', 'Provincie West-Vlaanderen':'WestVlaanderen',
       'Provincie Oost-Vlaanderen':'OostVlaanderen', 'Provincie Henegouwen':'Hainaut',
       'Provincie Luik':'Liège', 'Provincie Limburg':'Limburg', 'Provincie Luxemburg':'Luxembourg',
       'Provincie Namen':'Namur'}
df_inhab['sc_provence'] = df_inhab['TX_PROV_DESCR_NL'].map(map_statbel_provence_to_sc_provence)
df_tot_sc['AGEGROUP'].unique()
array(['10-19', '20-29', '30-39', '40-49', '50-59', '70-79', '60-69',
       '0-9', '90+', '80-89', nan], dtype=object)
df_inhab['AGEGROUP'] =pd.cut(df_inhab['CD_AGE'], bins=[0,10,20,30,40,50,60,70,80,90,200], labels=['0-9','10-19','20-29','30-39','40-49','50-59','60-69','70-79','80-89','90+'], include_lowest=True)
df_inhab_gender_prov = df_inhab.groupby(['sc_provence', 'CD_SEX', 'AGEGROUP'])['MS_POPULATION'].sum().reset_index()
df_inhab_gender_prov_cases = pd.merge(df_inhab_gender_prov, df_tot_sc.dropna(), left_on=['sc_provence', 'AGEGROUP', 'CD_SEX'], right_on=['PROVINCE', 'AGEGROUP', 'SEX'])
df_inhab_gender_prov_cases.head()
sc_provence CD_SEX AGEGROUP MS_POPULATION DATE PROVINCE REGION SEX CASES
0 Antwerpen F 0-9 113851 2020-03-05 Antwerpen Flanders F 1
1 Antwerpen F 0-9 113851 2020-03-18 Antwerpen Flanders F 1
2 Antwerpen F 0-9 113851 2020-03-26 Antwerpen Flanders F 1
3 Antwerpen F 0-9 113851 2020-03-30 Antwerpen Flanders F 1
4 Antwerpen F 0-9 113851 2020-04-03 Antwerpen Flanders F 1
df_plot = df_inhab_gender_prov_cases.groupby(['SEX', 'AGEGROUP', 'PROVINCE']).agg(CASES = ('CASES', 'sum'), MS_POPULATION=('MS_POPULATION', 'first')).reset_index()
df_plot
SEX AGEGROUP PROVINCE CASES MS_POPULATION
0 F 0-9 Antwerpen 9 113851
1 F 0-9 BrabantWallon 3 23744
2 F 0-9 Hainaut 11 81075
3 F 0-9 Limburg 11 48102
4 F 0-9 Liège 19 67479
... ... ... ... ... ...
195 M 90+ Luxembourg 17 469
196 M 90+ Namur 27 827
197 M 90+ OostVlaanderen 102 3105
198 M 90+ VlaamsBrabant 129 2611
199 M 90+ WestVlaanderen 121 3292

200 rows × 5 columns

df_plot['PROVINCE'].unique()
array(['Antwerpen', 'BrabantWallon', 'Hainaut', 'Limburg', 'Liège',
       'Luxembourg', 'Namur', 'OostVlaanderen', 'VlaamsBrabant',
       'WestVlaanderen'], dtype=object)
alt.Chart(df_plot).mark_bar().encode(x='AGEGROUP:N', y='CASES', color='SEX:N', column='PROVINCE:N')
df_plot['percentage'] = df_plot['CASES'] / df_plot['MS_POPULATION']
alt.Chart(df_plot).mark_bar().encode(x='AGEGROUP:N', y='percentage', color='SEX:N', column='PROVINCE:N')

Let's add a colorscale the makes the male blue and female number pink.

color_scale = alt.Scale(domain=['M', 'F'],
                        range=['#1f77b4', '#e377c2'])
alt.Chart(df_plot).mark_bar().encode(
    x='AGEGROUP:N', 
    y='percentage', 
    color=alt.Color('SEX:N', scale=color_scale, legend=None),
    column='PROVINCE:N')

The graph's get to wide. Let's use faceting to make two rows.

Inspired and based on https://altair-viz.github.io/gallery/us_population_pyramid_over_time.html

#slider = alt.binding_range(min=1850, max=2000, step=10)
# select_province = alt.selection_single(name='PROVINCE', fields=['PROVINCE'],
#                                    bind=slider, init={'PROVINCE': 'Antwerpen'})
color_scale = alt.Scale(domain=['Male', 'Female'],
                        range=['#1f77b4', '#e377c2'])

select_province = alt.selection_multi(fields=['PROVINCE'], bind='legend')

base = alt.Chart(df_plot).add_selection(
    select_province
).transform_filter(
    select_province
).transform_calculate(
    gender=alt.expr.if_(alt.datum.SEX == 'M', 'Male', 'Female')
).properties(
    width=250
)

left = base.transform_filter(
    alt.datum.gender == 'Female'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    x=alt.X('percentage:Q', axis=alt.Axis(format='.0%'),
            title='Percentage',
            sort=alt.SortOrder('descending'),
            ),
    color=alt.Color('gender:N', scale=color_scale, legend=None),
).mark_bar().properties(title='Female')

middle = base.encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    text=alt.Text('AGEGROUP:O'),
).mark_text().properties(width=20)

right = base.transform_filter(
    alt.datum.gender == 'Male'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    x=alt.X('percentage:Q', title='Percentage', axis=alt.Axis(format='.0%'),),
    color=alt.Color('gender:N', scale=color_scale, legend=None)
).mark_bar().properties(title='Male')

# legend = alt.Chart(df_plot).mark_text().encode(
#     y=alt.Y('PROVINCE:N', axis=None),
#     text=alt.Text('PROVINCE:N'),
#     color=alt.Color('PROVINCE:N', legend=alt.Legend(title="Provincie"))
# )

alt.concat(left, middle, right, spacing=5)

#legend=alt.Legend(title="Species by color")
provinces = df_plot['PROVINCE'].unique()
select_province = alt.selection_single(
    name='Select', # name the selection 'Select'
    fields=['PROVINCE'], # limit selection to the Major_Genre field
    init={'PROVINCE': 'Antwerpen'}, # use first genre entry as initial value
    bind=alt.binding_select(options=provinces) # bind to a menu of unique provence values
)


base = alt.Chart(df_plot).add_selection(
    select_province
).transform_filter(
    select_province
).transform_calculate(
    gender=alt.expr.if_(alt.datum.SEX == 'M', 'Male', 'Female')
).properties(
    width=250
)

left = base.transform_filter(
    alt.datum.gender == 'Female'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    x=alt.X('percentage:Q', axis=alt.Axis(format='.0%'),
            title='Percentage',
            sort=alt.SortOrder('descending'),
            scale=alt.Scale(domain=(0.0, 0.1), clamp=True)
            ),
    color=alt.Color('gender:N', scale=color_scale, legend=None),
    tooltip=[alt.Tooltip('percentage', format='.1%')]
).mark_bar().properties(title='Female')

middle = base.encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    text=alt.Text('AGEGROUP:O'),
).mark_text().properties(width=20)

right = base.transform_filter(
    alt.datum.gender == 'Male'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    x=alt.X('percentage:Q', title='Percentage', axis=alt.Axis(format='.1%'), scale=alt.Scale(domain=(0.0, 0.1), clamp=True)),
    color=alt.Color('gender:N', scale=color_scale, legend=None),
    tooltip=[alt.Tooltip('percentage', format='.1%')]
).mark_bar().properties(title='Male')

alt.concat(left, middle, right, spacing=5).properties(title='Percentage of covid-19 cases per province, gender and age grup in Belgium')

Mortality

# https://epistat.wiv-isp.be/covid/
# Dataset of mortality by date, age, sex, and region
df_dead_sc = pd.read_csv('https://epistat.sciensano.be/Data/COVID19BE_MORT.csv')
df_dead_sc.head()
DATE REGION AGEGROUP SEX DEATHS
0 2020-03-10 Brussels 85+ F 1
1 2020-03-11 Flanders 85+ F 1
2 2020-03-11 Brussels 75-84 M 1
3 2020-03-11 Brussels 85+ F 1
4 2020-03-12 Brussels 75-84 M 1
df_dead_sc['REGION'].value_counts()
Wallonia    291
Flanders    275
Brussels    271
Name: REGION, dtype: int64
df_dead_sc['AGEGROUP'].value_counts()
85+      223
75-84    205
65-74    179
45-64    132
25-44     19
0-24       1
Name: AGEGROUP, dtype: int64
df_inhab['AGEGROUP_sc'] =pd.cut(df_inhab['CD_AGE'], bins=[0,24,44,64,74,84,200], labels=['0-24','25-44','45-64','65-74','75-84','85+'], include_lowest=True)
df_inhab.groupby('AGEGROUP_sc').agg(lowest_age=('CD_AGE', 'min'), highest_age=('CD_AGE', max))
lowest_age highest_age
AGEGROUP_sc
0-24 0 24
25-44 25 44
45-64 45 64
65-74 65 74
75-84 75 84
85+ 85 110
df_inhab.head()
CD_REFNIS TX_DESCR_NL TX_DESCR_FR CD_DSTR_REFNIS TX_ADM_DSTR_DESCR_NL TX_ADM_DSTR_DESCR_FR CD_PROV_REFNIS TX_PROV_DESCR_NL TX_PROV_DESCR_FR CD_RGN_REFNIS TX_RGN_DESCR_NL TX_RGN_DESCR_FR CD_SEX CD_NATLTY TX_NATLTY_NL TX_NATLTY_FR CD_CIV_STS TX_CIV_STS_NL TX_CIV_STS_FR CD_AGE MS_POPULATION sc_provence AGEGROUP AGEGROUP_sc
0 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 69 11 Antwerpen 60-69 65-74
1 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 80 3 Antwerpen 70-79 75-84
2 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande M BEL Belgen Belges 4 Gescheiden Divorcé 30 2 Antwerpen 20-29 25-44
3 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 48 26 Antwerpen 40-49 45-64
4 11001 Aartselaar Aartselaar 11000 Arrondissement Antwerpen Arrondissement d’Anvers 10000.0 Provincie Antwerpen Province d’Anvers 2000 Vlaams Gewest Région flamande F BEL Belgen Belges 4 Gescheiden Divorcé 76 2 Antwerpen 70-79 75-84
df_dead_sc['REGION'].unique()
array(['Brussels', 'Flanders', 'Wallonia'], dtype=object)
df_inhab['TX_RGN_DESCR_NL'].value_counts()
Vlaams Gewest                     242865
Waals Gewest                      199003
Brussels Hoofdstedelijk Gewest     21513
Name: TX_RGN_DESCR_NL, dtype: int64
df_inhab_gender_prov = df_inhab.groupby(['TX_RGN_DESCR_NL', 'CD_SEX', 'AGEGROUP_sc'])['MS_POPULATION'].sum().reset_index()
region_sc_to_region_inhad = {'Flanders':'Vlaams Gewest', 'Wallonia':'Waals Gewest', 'Brussels':'Brussels Hoofdstedelijk Gewest'}
df_dead_sc['TX_RGN_DESCR_NL'] = df_dead_sc['REGION'].map(region_sc_to_region_inhad)
df_dead_sc.groupby(['TX_RGN_DESCR_NL', 'AGEGROUP', 'SEX'])['DEATHS'].sum()
TX_RGN_DESCR_NL                 AGEGROUP  SEX
Brussels Hoofdstedelijk Gewest  25-44     F        1
                                          M        4
                                45-64     F       21
                                          M       43
                                65-74     F       42
                                          M       71
                                75-84     F      128
                                          M      170
                                85+       F      270
                                          M      186
Vlaams Gewest                   0-24      F        1
                                25-44     F        2
                                          M        3
                                45-64     F       27
                                          M       63
                                65-74     F       67
                                          M      130
                                75-84     F      199
                                          M      335
                                85+       F      232
                                          M      309
Waals Gewest                    25-44     F        5
                                          M        4
                                45-64     F       41
                                          M       89
                                65-74     F       98
                                          M      186
                                75-84     F      290
                                          M      300
                                85+       F      704
                                          M      421
Name: DEATHS, dtype: int64
df_dead_sc_region_agegroup_gender = df_dead_sc.groupby(['TX_RGN_DESCR_NL', 'AGEGROUP', 'SEX'])['DEATHS'].sum().reset_index()
df_inhab_gender_prov_deaths = pd.merge(df_inhab_gender_prov, df_dead_sc_region_agegroup_gender, left_on=['TX_RGN_DESCR_NL', 'AGEGROUP_sc', 'CD_SEX'], right_on=['TX_RGN_DESCR_NL', 'AGEGROUP', 'SEX'])
df_inhab_gender_prov_deaths['MS_POPULATION'].sum()
9077403
df_inhab_gender_prov_deaths['DEATHS'].sum()
4442
df_inhab_gender_prov_deaths
TX_RGN_DESCR_NL CD_SEX AGEGROUP_sc MS_POPULATION AGEGROUP SEX DEATHS
0 Brussels Hoofdstedelijk Gewest F 25-44 197579 25-44 F 1
1 Brussels Hoofdstedelijk Gewest F 45-64 137628 45-64 F 21
2 Brussels Hoofdstedelijk Gewest F 65-74 45214 65-74 F 42
3 Brussels Hoofdstedelijk Gewest F 75-84 30059 75-84 F 128
4 Brussels Hoofdstedelijk Gewest F 85+ 18811 85+ F 270
5 Brussels Hoofdstedelijk Gewest M 25-44 194988 25-44 M 4
6 Brussels Hoofdstedelijk Gewest M 45-64 140348 45-64 M 43
7 Brussels Hoofdstedelijk Gewest M 65-74 36698 65-74 M 71
8 Brussels Hoofdstedelijk Gewest M 75-84 19969 75-84 M 170
9 Brussels Hoofdstedelijk Gewest M 85+ 7918 85+ M 186
10 Vlaams Gewest F 0-24 874891 0-24 F 1
11 Vlaams Gewest F 25-44 820036 25-44 F 2
12 Vlaams Gewest F 45-64 901554 45-64 F 27
13 Vlaams Gewest F 65-74 353925 65-74 F 67
14 Vlaams Gewest F 75-84 245981 75-84 F 199
15 Vlaams Gewest F 85+ 132649 85+ F 232
16 Vlaams Gewest M 25-44 827281 25-44 M 3
17 Vlaams Gewest M 45-64 917008 45-64 M 63
18 Vlaams Gewest M 65-74 336242 65-74 M 130
19 Vlaams Gewest M 75-84 193576 75-84 M 335
20 Vlaams Gewest M 85+ 69678 85+ M 309
21 Waals Gewest F 25-44 457356 25-44 F 5
22 Waals Gewest F 45-64 496668 45-64 F 41
23 Waals Gewest F 65-74 199422 65-74 F 98
24 Waals Gewest F 75-84 118224 75-84 F 290
25 Waals Gewest F 85+ 68502 85+ F 704
26 Waals Gewest M 25-44 459444 25-44 M 4
27 Waals Gewest M 45-64 487322 45-64 M 89
28 Waals Gewest M 65-74 175508 65-74 M 186
29 Waals Gewest M 75-84 82876 75-84 M 300
30 Waals Gewest M 85+ 30048 85+ M 421
df_inhab_gender_prov_deaths['percentage'] = df_inhab_gender_prov_deaths['DEATHS']/df_inhab_gender_prov_deaths['MS_POPULATION']
df_plot = df_inhab_gender_prov_deaths
regions = df_plot['TX_RGN_DESCR_NL'].unique()
select_province = alt.selection_single(
    name='Select', # name the selection 'Select'
    fields=['TX_RGN_DESCR_NL'], # limit selection to the Major_Genre field
    init={'TX_RGN_DESCR_NL': 'Vlaams Gewest'}, # use first genre entry as initial value
    bind=alt.binding_select(options=regions) # bind to a menu of unique provence values
)

base = alt.Chart(df_plot).add_selection(
    select_province
).transform_filter(
    select_province
).transform_calculate(
    gender=alt.expr.if_(alt.datum.SEX == 'M', 'Male', 'Female')
).properties(
    width=250
)

left = base.transform_filter(
    alt.datum.gender == 'Female'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    x=alt.X('percentage:Q', axis=alt.Axis(format='.2%'),
            title='Percentage',
            sort=alt.SortOrder('descending'),
            # scale=alt.Scale(domain=(0.0, 0.02), clamp=True)
            ),
    color=alt.Color('gender:N', scale=color_scale, legend=None),
    tooltip=[alt.Tooltip('percentage', format='.2%')]
).mark_bar().properties(title='Female')

middle = base.encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    text=alt.Text('AGEGROUP:O'),
).mark_text().properties(width=20)

right = base.transform_filter(
    alt.datum.gender == 'Male'
).encode(
    y=alt.Y('AGEGROUP:O', axis=None),
    # x=alt.X('percentage:Q', title='Percentage', axis=alt.Axis(format='.2%'), scale=alt.Scale(domain=(0.0, 0.02), clamp=True)),
    x=alt.X('percentage:Q', title='Percentage', axis=alt.Axis(format='.2%')),
    color=alt.Color('gender:N', scale=color_scale, legend=None),
    tooltip=[alt.Tooltip('percentage', format='.2%')]
).mark_bar().properties(title='Male')

alt.concat(left, middle, right, spacing=5).properties(title='Percentage of covid-19 deaths per province, gender and age group relative to number of inhabitants in Belgium')

Daily covid-19 Deaths compared to average deaths the last 10 years

"In this blogpost we try to get an idea of how many extra deaths we have in Belgium due to covid-19 compared to the average we had the last 10 years."

# Import pandas for data wrangling and Altair for plotting
import pandas as pd
import altair as alt

The number of deadths per day from 2008 until 2018 can obtained from Statbel, the Belgium federal bureau of statistics:

df = pd.read_excel('https://statbel.fgov.be/sites/default/files/files/opendata/bevolking/TF_DEATHS.xlsx') # , skiprows=5, sheet_name=sheetnames
# Get a quick look to the data
df.head()
DT_DATE MS_NUM_DEATHS
0 2008-01-01 342
1 2008-01-02 348
2 2008-01-03 340
3 2008-01-04 349
4 2008-01-05 348
df['Jaar'] = df['DT_DATE'].dt.year
df['Dag'] = df['DT_DATE'].dt.dayofyear
df_plot = df.groupby('Dag')['MS_NUM_DEATHS'].mean().to_frame().reset_index()
# Let's make a quick plot
alt.Chart(df_plot).mark_line().encode(x='Dag', y='MS_NUM_DEATHS').properties(width=600)

The John Hopkings University CSSE keeps track of the number of covid-19 deadths per day and country in a github repository: https://github.com/CSSEGISandData/COVID-19. We can easily obtain this data by reading it from github and filter out the cases for Belgium.

deaths_url =  'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
deaths = pd.read_csv(deaths_url, sep=',')

Filter out Belgium

deaths_be = deaths[deaths['Country/Region'] == 'Belgium']

Inspect how the data is stored

deaths_be
Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 4/9/20 4/10/20 4/11/20 4/12/20 4/13/20 4/14/20 4/15/20 4/16/20 4/17/20 4/18/20
23 NaN Belgium 50.8333 4.0 0 0 0 0 0 0 ... 2523 3019 3346 3600 3903 4157 4440 4857 5163 5453

1 rows × 92 columns

Create dateframe for plotting

df_deaths = pd.DataFrame(data={'Datum':pd.to_datetime(deaths_be.columns[4:]), 'Overlijdens':deaths_be.iloc[0].values[4:]})

Check for Nan's

df_deaths['Overlijdens'].isna().sum()
0

We need to do some type convertions. We cast 'Overlijdens' to integer. Next, we add the number of the day.

df_deaths['Overlijdens'] = df_deaths['Overlijdens'].astype(int)
df_deaths['Dag'] = df_deaths['Datum'].dt.dayofyear

Plot the data:

dead_2008_2018 = alt.Chart(df_plot).mark_line().encode(x='Dag', y='MS_NUM_DEATHS')
dead_2008_2018

Calculate the day-by-day change

df_deaths['Nieuwe covid-19 Sterfgevallen'] = df_deaths['Overlijdens'].diff()
# Check types
df_deaths.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 88 entries, 0 to 87
Data columns (total 4 columns):
 #   Column                         Non-Null Count  Dtype         
---  ------                         --------------  -----         
 0   Datum                          88 non-null     datetime64[ns]
 1   Overlijdens                    88 non-null     int32         
 2   Dag                            88 non-null     int64         
 3   Nieuwe covid-19 Sterfgevallen  87 non-null     float64       
dtypes: datetime64[ns](1), float64(1), int32(1), int64(1)
memory usage: 2.5 KB

Plot covid-19 deaths in Belgium according to JHU CSSE. The plot shows a tooltip if you hover over the points.

dead_covid= alt.Chart(df_deaths).mark_line(point=True).encode(
    x=alt.X('Dag',scale=alt.Scale(domain=(1, 110), clamp=True)),
    y='Nieuwe covid-19 Sterfgevallen', 
    color=alt.ColorValue('red'), 
    tooltip=['Dag', 'Nieuwe covid-19 Sterfgevallen'])
dead_covid

Now we add average deaths per day in the last 10 year to the plot.

dead_2008_2018 + dead_covid

Take quick look to the datatable:

df.head()
DT_DATE MS_NUM_DEATHS Jaar Dag
0 2008-01-01 342 2008 1
1 2008-01-02 348 2008 2
2 2008-01-03 340 2008 3
3 2008-01-04 349 2008 4
4 2008-01-05 348 2008 5

The column 'DT_DATE' is a string. We convert it to a datatime so we can add it to the tooltip.

df['Datum'] = pd.to_datetime(df['DT_DATE'])

Now we are prepared to make the final graph. We use the Altair mark_errorband(extend='ci') to bootstrap 95% confidence band around the average number of deaths per day.

line = alt.Chart(df).mark_line().encode(
    x=alt.X('Dag', scale=alt.Scale(
            domain=(1, 120),
            clamp=True
        )),
    y='mean(MS_NUM_DEATHS)'
)

# Bootstrapped 95% confidence interval
band = alt.Chart(df).mark_errorband(extent='ci').encode(
    x=alt.X('Dag', scale=alt.Scale(domain=(1, 120), clamp=True)),
    y=alt.Y('MS_NUM_DEATHS', title='Overlijdens per dag'),
)

dead_covid= alt.Chart(df_deaths).mark_line(point=True).encode(
    x=alt.X('Dag',scale=alt.Scale(domain=(1, 120), clamp=True)),
    y='Nieuwe covid-19 Sterfgevallen',
    color=alt.ColorValue('red'),
    tooltip=['Dag', 'Nieuwe covid-19 Sterfgevallen', 'Datum']
)

(band + line + dead_covid).properties(width=1024, title='Gemiddeld aantal overlijdens over 10 jaar versus overlijdens door covid-19 in Belgie')

Source date from sciensano

In this section, we compare the graph obtained with data obtained from sciensano.

df_sc = pd.read_csv('https://epistat.sciensano.be/Data/COVID19BE_MORT.csv')
df_sc.head()
DATE REGION AGEGROUP SEX DEATHS
0 2020-03-10 Brussels 85+ F 1
1 2020-03-11 Flanders 85+ F 1
2 2020-03-11 Brussels 75-84 M 1
3 2020-03-11 Brussels 85+ F 1
4 2020-03-12 Brussels 75-84 M 1
df_dead_day = df_sc.groupby('DATE')['DEATHS'].sum().reset_index()
df_dead_day['Datum'] = pd.to_datetime(df_dead_day['DATE'])
df_dead_day['Dag'] = df_dead_day['Datum'].dt.dayofyear
line = alt.Chart(df).mark_line().encode(
    x=alt.X('Dag', title='Dag van het jaar', scale=alt.Scale(
            domain=(1, 120),
            clamp=True
        )),
    y='mean(MS_NUM_DEATHS)'
)

# Bootstrapped 95% confidence interval
band = alt.Chart(df).mark_errorband(extent='ci').encode(
    x=alt.X('Dag', scale=alt.Scale(domain=(1, 120), clamp=True)),
    y=alt.Y('MS_NUM_DEATHS', title='Overlijdens per dag'),
)

dead_covid= alt.Chart(df_dead_day).mark_line(point=True).encode(
    x=alt.X('Dag',scale=alt.Scale(domain=(1, 120), clamp=True)),
    y='DEATHS',
    color=alt.ColorValue('red'),
    tooltip=['Dag', 'DEATHS', 'Datum']
)

(band + line + dead_covid).properties(width=750, title='Gemiddeld aantal overlijdens over 10 jaar versus overlijdens door covid-19 in Belgie')

Obviously, data form 16-17-18 April 2020 is not final yet. Also, the amounts are smaller then those from JHU.

Obtain more detail (for another blogpost...)

df_tot_sc = pd.read_excel('https://epistat.sciensano.be/Data/COVID19BE.xlsx')
df_tot_sc
DATE PROVINCE REGION AGEGROUP SEX CASES
0 2020-03-01 Brussels Brussels 10-19 M 1
1 2020-03-01 Brussels Brussels 10-19 F 1
2 2020-03-01 Brussels Brussels 20-29 M 1
3 2020-03-01 Brussels Brussels 30-39 F 1
4 2020-03-01 Brussels Brussels 40-49 F 1
... ... ... ... ... ... ...
6875 NaN OostVlaanderen Flanders NaN F 4
6876 NaN VlaamsBrabant Flanders 40-49 M 3
6877 NaN VlaamsBrabant Flanders 40-49 F 2
6878 NaN VlaamsBrabant Flanders 50-59 M 1
6879 NaN WestVlaanderen Flanders 50-59 M 3

6880 rows × 6 columns

We know that there are a lot of reional differences:

df_plot = df_tot_sc.groupby(['DATE', 'PROVINCE'])['CASES'].sum().reset_index()
df_plot
DATE PROVINCE CASES
0 2020-03-01 Brussels 6
1 2020-03-01 Limburg 1
2 2020-03-01 Liège 2
3 2020-03-01 OostVlaanderen 1
4 2020-03-01 VlaamsBrabant 6
... ... ... ...
505 2020-04-17 OostVlaanderen 44
506 2020-04-17 VlaamsBrabant 42
507 2020-04-17 WestVlaanderen 30
508 2020-04-18 Brussels 1
509 2020-04-18 Hainaut 1

510 rows × 3 columns

df_plot['DATE'] = pd.to_datetime(df_plot['DATE'])
base = alt.Chart(df_plot, title='Number of cases in Belgium per day and province').mark_line(point=True).encode(
    x=alt.X('DATE:T', title='Datum'),
    y=alt.Y('CASES', title='Cases per day'),
    color='PROVINCE',
    tooltip=['DATE', 'CASES', 'PROVINCE']
).properties(width=600)
base

From the above graph we see a much lower number of cases in Luxembourg, Namur, Waals Brabant.

!pwd
'pwd' is not recognized as an internal or external command,
operable program or batch file.
!dir
 Volume in drive C is Windows
 Volume Serial Number is 7808-E933

 Directory of C:\Users\lnh6dt5\AppData\Local\Temp\Mxt121\tmp\home_lnh6dt5\blog\_notebooks

19/04/2020  14:14    <DIR>          .
19/04/2020  14:14    <DIR>          ..
19/04/2020  10:37    <DIR>          .ipynb_checkpoints
19/04/2020  10:17            23.473 2020-01-28-Altair.ipynb
19/04/2020  10:34             9.228 2020-01-29-bullet-chart-altair.ipynb
19/04/2020  10:26            41.041 2020-02-15-breakins.ipynb
19/04/2020  09:43            30.573 2020-02-20-test.ipynb
19/04/2020  09:49             1.047 2020-04-18-first-test.ipynb
19/04/2020  14:14         1.237.674 2020-04-19-deads-last-ten-year-vs-covid.ipynb
19/04/2020  09:43    <DIR>          my_icons
19/04/2020  09:43               771 README.md
               7 File(s)      1.343.807 bytes
               4 Dir(s)  89.905.336.320 bytes free

First test post

Testing a simple notebook for publishing with fastpages

import pandas as pd
import altair as alt
# Check if this get published

Evolution of burglary in Leuven. Is the trend downwards ?

Evolution of burglary in Leuven. Is the trend downwards ?

The local police shared a graph with the number of break-ins in Leuven per year. The article shows a graph with a downwards trendline. Can we conclude that the number of breakins is showing a downward trend based on those numbers? Let's construct a dataframe with the data from the graph.

import numpy as np
import pandas as pd
import altair as alt

df = pd.DataFrame({'year_int':[y for y in range(2006, 2020)], 
                  'breakins':[1133,834,953,891,1006,1218,992,1079,1266,1112,713,669,730,644]})
df['year'] = pd.to_datetime(df['year_int'], format='%Y')
points = alt.Chart(df).mark_line(point=True).encode(
    x='year', y='breakins', tooltip='breakins'
)
points + points.transform_regression('year', 'breakins').mark_line(
    color='green'
).properties(
    title='Regression trend on the number breakins per year in Leuven'
)

The article claims that the number of breakins stabilizes the last years. Let's perform a local regression to check that.

# https://opendatascience.com/local-regression-in-python
# Loess: https://gist.github.com/AllenDowney/818f6153ef316aee80467c51faee80f8
points + points.transform_loess('year', 'breakins').mark_line(
    color='green'
).properties(
    title='Local regression trend on the number breakins per year in Leuven'
)

But what about the trend line? Are we sure the trend is negative ? Bring in the code based on the blogpost The hacker's guide to uncertainty estimates to estimate the uncertainty.:

# Code from: https://erikbern.com/2018/10/08/the-hackers-guide-to-uncertainty-estimates.html
import scipy.optimize
import random

def model(xs, k, m):
    return k * xs + m

def neg_log_likelihood(tup, xs, ys):
    # Since sigma > 0, we use use log(sigma) as the parameter instead.
    # That way we have an unconstrained problem.
    k, m, log_sigma = tup
    sigma = np.exp(log_sigma)
    delta = model(xs, k, m) - ys
    return len(xs)/2*np.log(2*np.pi*sigma**2) + \
        np.dot(delta, delta) / (2*sigma**2)

def confidence_bands(xs, ys, nr_bootstrap):
    curves = []
    xys = list(zip(xs, ys))
    for i in range(nr_bootstrap):
        # sample with replacement
        bootstrap = [random.choice(xys) for _ in xys]
        xs_bootstrap = np.array([x for x, y in bootstrap])
        ys_bootstrap = np.array([y for x, y in bootstrap])
        k_hat, m_hat, log_sigma_hat = scipy.optimize.minimize(
          neg_log_likelihood, (0, 0, 0), args=(xs_bootstrap, ys_bootstrap)
        ).x
        curves.append(
          model(xs, k_hat, m_hat) +
          # Note what's going on here: we're _adding_ the random term
          # to the predictions!
          np.exp(log_sigma_hat) * np.random.normal(size=xs.shape)
        )
    lo, hi = np.percentile(curves, (2.5, 97.5), axis=0)
    return lo, hi
# Make a plot with a confidence band
df['lo'], df['hi'] = confidence_bands(df.index, df['breakins'], 100)

ci = alt.Chart(df).mark_area().encode(
    x=alt.X('year:T', title=''),
    y=alt.Y('lo:Q'),
    y2=alt.Y2('hi:Q', title=''),
    color=alt.value('lightblue'),
    opacity=alt.value(0.6)
)

chart = alt.Chart(df).mark_line(point=True).encode(
    x='year', y='breakins', tooltip='breakins'
)
ci + chart  + chart.transform_regression('year', 'breakins').mark_line(
    color='red'
).properties(
    title='95% Confidence band of the number of breakins per year in Leuven'
)

On the above chart, we see that a possitive trend might be possible as well.

Linear regression

Let's perform a linear regression with statsmodel to calculate the confidence interval on the slope of the regression line.

import statsmodels.formula.api as smf
results = smf.ols('breakins ~ index', data=df.reset_index()).fit()
results.params
Intercept    1096.314286
index         -23.169231
dtype: float64

The most likely slope of the trend line is 23.17 breakins per year. But how sure are we that the trend is heading down ?

results.summary()
C:\Users\lnh6dt5\AppData\Local\Continuum\anaconda3\lib\site-packages\scipy\stats\stats.py:1535: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=14
  "anyway, n=%i" % int(n))
OLS Regression Results
Dep. Variable: breakins R-squared: 0.223
Model: OLS Adj. R-squared: 0.159
Method: Least Squares F-statistic: 3.451
Date: Sun, 19 Apr 2020 Prob (F-statistic): 0.0879
Time: 10:26:45 Log-Likelihood: -92.105
No. Observations: 14 AIC: 188.2
Df Residuals: 12 BIC: 189.5
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
Intercept 1096.3143 95.396 11.492 0.000 888.465 1304.164
index -23.1692 12.472 -1.858 0.088 -50.344 4.006
Omnibus: 1.503 Durbin-Watson: 1.035
Prob(Omnibus): 0.472 Jarque-Bera (JB): 1.196
Skew: 0.577 Prob(JB): 0.550
Kurtosis: 2.153 Cond. No. 14.7

Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The analysis reveals that the slope of the best fitting regression line is 23 breakins less per year. However, the confidence interval of the trend is between -50.344 and 4.006. Also the p)value of the regression coefficient is 0.088. Meaning we have eight percent chance that the negative trend is by accident. Hence, based on the current data we are not 95% percent sure the trend is downwards. Hence we can not conclude, based on this data, that there is a negative trend. This corresponds with the width of the 95% certainty band drawn that allows for an upward trend line:

# Here are the confidence intervals of the regression
results.conf_int()




0 1
Intercept 888.464586 1304.163986
index -50.344351 4.005889

y_low  = results.params['Intercept'] # ?ost likely value of the intercept
y_high = results.params['Intercept'] + results.conf_int()[1]['index'] * df.shape[0] # Value of upward trend for the last year
df_upward_trend = pd.DataFrame({'year':[df['year'].min(), df['year'].max()], 
                                'breakins':[y_low, y_high]})
possible_upwards_trend = alt.Chart(df_upward_trend).mark_line(
    color='green',
    strokeDash=[10,10]
).encode(
    x='year:T',
    y=alt.Y('breakins:Q',
    title='Number of breakins per year')
)

points = alt.Chart(df).mark_line(point=True).encode(x='year', y='breakins', tooltip='breakins')
(ci + points  + points.transform_regression('year', 'breakins').mark_line(color='red') 
              + possible_upwards_trend).properties(
    title='Trend analysis on the number of breakins per year in Leuven, Belgium'
)

In the above graph, we see that a slight positive trend (green dashed line) is in the 95% confidence band on the regression coefficient. We are not sure that the trend on the number of breakins is downwards.


Bullet chart in python Altair

How to make bullet charts with Altair

In the article "Bullet Charts - What Is It And How To Use It" I learned about Bullet charts. It's a specific kind of barchart that must convey the state of a measure or KPI. The goal is to see in a glance if the target is met. Here is an example bullet chart from the article:

# This causes issues to: 
# from IPython.display import Image
# Image('https://jscharting.com/blog/bullet-charts/images/bullet_components.png')

Example Bullet Chart

# <img src="https://jscharting.com/blog/bullet-charts/images/bullet_components.png" alt="Bullet chart" style="width: 200px;"/>

Below is some Python code that generates bullets graphs using the Altair library.

import altair as alt
import pandas as pd

df = pd.DataFrame.from_records([
    {"title":"Revenue","subtitle":"US$, in thousands","ranges":[150,225,300],"measures":[220,270],"markers":[250]},
    {"title":"Profit","subtitle":"%","ranges":[20,25,30],"measures":[21,23],"markers":[26]},
    {"title":"Order Size","subtitle":"US$, average","ranges":[350,500,600],"measures":[100,320],"markers":[550]},
    {"title":"New Customers","subtitle":"count","ranges":[1400,2000,2500],"measures":[1000,1650],"markers":[2100]},
    {"title":"Satisfaction","subtitle":"out of 5","ranges":[3.5,4.25,5],"measures":[3.2,4.7],"markers":[4.4]}
])

alt.layer(
    alt.Chart().mark_bar(color='#eee').encode(alt.X("ranges[2]:Q", scale=alt.Scale(nice=False), title=None)),
    alt.Chart().mark_bar(color='#ddd').encode(x="ranges[1]:Q"),
    alt.Chart().mark_bar(color='#bbb').encode(x="ranges[0]:Q"),
    alt.Chart().mark_bar(color='steelblue', size=10).encode(x='measures[0]:Q'),
    alt.Chart().mark_tick(color='black', size=12).encode(x='markers[0]:Q'),
    data=df
).facet(
    row=alt.Row("title:O", title='')
).resolve_scale(
    x='independent'
)