Modules
load_likes(data_directory)
¶
Load 'like' data from JavaScript files in a given directory.
This function searches for files matching the pattern 'like*.js' within the specified data directory, extracts JSON data from each file, and aggregates the 'like' data into a list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_directory |
str
|
The path to the directory containing the 'like*.js' files. |
required |
Returns:
Type | Description |
---|---|
list[dict[str, LikeInfo]]
|
list[dict[str, LikeInfo]]: A list of dictionaries containing 'like' information. |
Raises:
Type | Description |
---|---|
Exception
|
If there is an error processing any of the files, the exception is caught, an error message is printed, and the function continues processing remaining files. |
Source code in search_x_likes/list_likes_in_archive.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
get_embedding(client, text, model='text-embedding-ada-002')
¶
Generate embedding vectors for a text using the specified OpenAI model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
client |
openAI
|
An OpenAI client object |
required |
text |
str]
|
A string containing input text for which to generate embeddings. |
required |
model |
str
|
The name of the embedding model to use. |
'text-embedding-ada-002'
|
Returns:
Type | Description |
---|---|
list[float]
|
list[float]: A list of float representing an embedding vector. |
Source code in search_x_likes/embed_posts.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
InputApp
¶
Bases: App
Source code in search_x_likes/exact_search.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
compose()
¶
Set up the layout.
Source code in search_x_likes/exact_search.py
46 47 48 49 50 51 52 53 54 |
|
on_input_changed(event)
¶
Handle input change events.
Source code in search_x_likes/exact_search.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
highlight_query(text, query)
¶
Wraps every occurrence of the query string in bold Markdown in the text.
Source code in search_x_likes/exact_search.py
22 23 24 25 26 27 28 29 30 |
|
InputApp
¶
Bases: App
Source code in search_x_likes/bm25_search.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
compose()
¶
Set up the layout.
Source code in search_x_likes/bm25_search.py
36 37 38 39 40 41 42 43 44 |
|
on_input_changed(event)
¶
Handle input change events.
Source code in search_x_likes/bm25_search.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
InputApp
¶
Bases: App
Source code in search_x_likes/cosine_search.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
compose()
¶
Set up the layout.
Source code in search_x_likes/cosine_search.py
66 67 68 69 70 71 72 73 74 |
|
on_input_submitted(event)
¶
Handle input submission events (when Enter is pressed).
Source code in search_x_likes/cosine_search.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
get_top_k_embeddings(df, embeddings_col, search_embedding, k)
¶
Retrieves the top-k most similar embeddings from a DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
DataFrame containing the embeddings. |
required |
embeddings_col |
str
|
Column name of embeddings. |
required |
search_embedding |
ndarray
|
The embedding of the search string. |
required |
k |
int
|
Number of top embeddings to retrieve. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
raise EmbeddingColumnTypeError(embeddings_col) |
Source code in search_x_likes/cosine_search.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|